Decay rates of a dipole near a planar multilayer stack

Following (Le Ru, Etchegoin, p. 571), and (Novotny, Hecht pp. 335–360), the enhancement factor for the total decay rate for a dipole perpendicular to the interface is

Mtot=1+320{q31q2rp(q)exp(2ik1d1q2)}dq

The integrand diverges as q → 1, it is therefore advantageous to perform the substitution $u:=\sqrt{1 - q^2}$. In order to maintain a real path of integration, the integral is first split into a radiative region (0 ≤ q ≤ 1, $u:=\sqrt{1 - q^2}\geq 0$), and an evanescent region (1 ≤ q ≤ ∞, $-i u:=\sqrt{q^2 - 1}\geq 0$). After some algebraic manipulation, we obtain, Mtot=1+32(I1+I2) where I1+I2=01[1u2]{rp(1u2)exp(2idk1u)}du+0[1+u2]exp(2dk1u){rp(1+u2)}du Similarly, for the parallel dipole Mtot=1+340{[rs(q)1q2rp(q)1q2]qexp(2ik1d1q2)}dq which can be rewritten as, Mtot=1+34(I1+I2) where I1+I2=01{[rs(1u2)u2rp(1u2)]exp(2idk1u)}du+0exp(2dk1u){rs(1+u2)+u2rp(1+u2)}du