--- title: "Surface plasmon-polaritons in the Kretschmann configuration" date: "`r format(Sys.time(), '%d %B, %Y')`" author: "baptiste AuguiƩ" output: rmarkdown::html_vignette: toc: true toc_depth: 2 fig_width: 7 fig_height: 4 fig_caption: true vignette: > %\VignetteIndexEntry{kretschamnn reflectivity} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r demo, message=FALSE, echo=FALSE} knitr::read_demo("kretschmann_reflectivity", package="planar") ``` The Kretschmann configuration consists of a thin metal film, typically 50nm of gold or silver, deposited on top of a high-index prism (n=1.5 for glass). Light incident from the prism side undergoes total internal reflection (TIR) above ~45 degrees (internal angle). The evanescent field associated with TIR penetrates the metal and may couple to surface plasmon-polaritons supported at the air/metal interface. Here we model the optical properties of such a system, starting with the angular variation of the reflectivity. ### Reflectivity against internal incident angle for the Kretschmann configuration, at fixed wavelength ```{r load, echo=FALSE,results='hide'} ``` #### Setting up ```{r setup, results='hide'} ``` #### Modelling the reflectivity ```{r simulation} ``` #### Plotting the results ```{r reflectivity,fig.width=10} ``` #### Variation of the parameters, and effect on the resonance We now look at the effect of changing the thickness of the metal layer, from non-existent (single air/glass interface), to an opaque metal film. First, we wrap the calculation in a function, and loop over this function with a vector of film thicknesses. ```{r loop} ``` ```{r variation} ```